
Jeagle: a JAVA Runtime Verification tool

Marcelo D’Amorim1? ?? and Klaus Havelund2

1 Department of Computer Science, University of Illinois Urbana-Champaign, USA
2 Kestrel Technology, NASA Ames Research Center, USA

Abstract. We introduce the temporal logic Jeagle and its supporting tool for run-
time verification of Java programs. A monitor for an Jeagle formula checks if a
finite trace of program events satisfies the formula. Jeagle is a programming ori-
ented extension of the rule-based powerful Eagle logic that has been shown to be
capable of defining and implementing a range of finite trace monitoring logics,
including future and past time temporal logic, real-time and metric temporal log-
ics, interval logics, forms of quantified temporal logics, and so on. Monitoring is
achieved on a state-by-state basis avoiding any need to store the input trace. Jeagle
extends Eagle with constructs for capturing parameterized program events such
as method calls and method returns. Parameters can be the objects that methods
are called upon, arguments to methods, and return values. Jeagle allows one to
refer to these in formulas. The tool performs automated program instrumentation
using AspectJ. We show the transformational semantics of Jeagle.

1 Introduction

Model Checking [6], Theorem Proving [14] and Static Analysis [16] are techniques
aiming at static program verification. The first is concerned with checking if all pos-
sible traces derived from a program (or abstract model) satisfy a property of interest.
The state-space explosion is known to be an issue when considering concurrency and
unbounded types. Additional model abstraction, such as partial-order reduction, can
reduce the model size considerably but scalability is still an issue when checking prop-
erties of programs in general. Theorem Proving relies on the language semantics and
a proof system in order to come up with a proof that the system will behave correctly
for all possible inputs. The proof system can be defined inductively on the syntax of
the program. This technique requires user ingenuity to produce checkable predicates.
For instance, there are valid properties which are non-inductive. That is, can not be
proved valid using induction on the syntax. In practice, only reachable program states
must satisfy stated properties. In order to cope with non-inductive properties, the user
may start by specifying a high-level property and then providing more information to
prune the set of possible transitions. This technique is thus not fully mechanizable. That
is, it requires user intervention. As yet another technique, static analysis is concerned
with analyzing the program offline and generating summarized information about its
elements. The outcome of the analysis is usually imprecise but can be interpreted con-
servatively to produce program transformers that can, for example, optimize the code
or simplify it with respect to some property that wants to be observed.

? CAPES grant# 15021917
?? This author is grateful for the support received from MCT while participating in the Summer

Student Research Program at the NASA Ames Research Center

In contrast to these techniques, this paper describes a logic and tool that employs
dynamic analysis to detect bugs in software during its execution. Runtime Verification
(RV) [1] is concerned with checking a single trace of the program against properties
described in some logic. When a property is violated or validated the program can take
actions to deal with it. The technique scales since just one model is considered. In
addition, since the check is done during runtime only reachable states are touched. The
technique can be used both for testing and monitoring. In the first case, one must come
up with test cases [2] that might exercise a bug. In this setting RV is considered as an
auxiliary tool to automate the creation of oracles that detect errors. An RV tool can also
be used to monitor a program run so to take actions in response to the violation of a
property. Under this perspective the RV tool may be used to define how the program
reacts to bugs, possibly steering it to the correct behavior [8].

The paper describes a logic and its tools, named JEAGLE, for runtime verification
of JAVA programs. By using a dialect of JAVA, the user can describe temporal proper-
ties relating different points in the program and their accessible objects, and verify the
program against these properties during runtime. The logic is defined on top of EAGLE

which is more expressive than several logics [3]. EAGLE not only allows one to state
temporal, and interval properties but also to define new logics.

Instrumentation is acknowledged as an issue that runtime verification tools have to
face in order to monitor programs [5, 13, 10]. Some tools provide no support for me-
chanical instrumentation, others use annotations in the source program to check against
verification formulae. We understand that automated instrumentation is part of the prob-
lem we want to solve, and that a tight integration between the logic and the source lan-
guage will not only simplify the task of writing and reasoning about properties but also
give opportunity to mechanical instrumentation.

We claim that by augmenting the EAGLE language with a simple construct that al-
lows one to bind data values from parameterized events of the program is a way of
achieving this goal. This construct is the event expression and has been mainly influ-
enced by aspect languages [12] and process algebras [15].

We present related work in the following section. In section 3 EAGLE is described.
Section 4 presents JEAGLE as an extension to EAGLE. It first describes the tool; the
language syntax and monitor examples are then given. Finally, a transformational se-
mantics is defined and the implementation discussed. Section 5 concludes this work.

2 Related Work

EAGLE [3] is a language-independent runtime verification tool and logic. It requires
the user to create a projection of the actual program state. User-defined formulae are
evaluated with respect to this projected state. The EAGLE language essentially extends
the µ-calculus with data parameterization. JEAGLE is defined on top of EAGLE and
supports automated instrumentation and object reasoning in the expense of making the
language specific to Java.

JAVA MAC [13] defines an event-based language to describe monitors. MAC is
comprised of two specification languages, PEDL and MEDL. The first is tightly inte-
grated to the programming language and defines events that might occur during the pro-
gram execution. A MEDL specification, on the other hand, makes use of these events

2

in order to state high-level requirements. JEAGLE can define MAC conditions as rules
and local variables can be cast as formal parameters in these rules. In contrast to MAC
that allows user-defined high-level events to be described, JEAGLE event expressions
only concern method calls and returns currently. However, this construct is designed to
be extensible so to allow one to reason about other program events. In addition, JEAGLE

supports data binding and object reasoning which we believe to be an essential feature
of object-oriented program monitoring. To the best of our knowledge MAC does not
support them.

JASS [4] is a JAVA tool providing a trace-assertion checker in addition to a language
for describing pre and post conditions for methods, loop variants (used to assure loop
termination) and invariants, and class invariants which are predicates about the state of
objects of a particular class. These are defined in a similar fashion as in EIFFEL [19].
The language of trace-assertions is similar to CSP and interests us the most. Trace
assertions are defined as class invariants in the form of annotations in the class file. The
notation and semantics of the data-binding construct is similar to those used in modal
logics for process-algebras like CCS and π-calculus [15]. These works influenced us
severely on the integration of program and logic as well as on the notation and semantics
of event expressions. We understand that the distinction between JASS and JEAGLE rely
mainly on the expressiveness of their language. For example, JEAGLE do not provide
built-in operators for parallel composition and hiding and this could make the set of
possible traces easier to define.

TEMPORAL ROVER [7] allows the user specify LTL requirements to be checked
during runtime. The programmer needs to manually instrument the program in order to
emit events to the checker. Similarly to Temporal Rover, JEAGLE supports LTL with
past and future combined. In contrast, JEAGLE provides automated program instrumen-
tation, can capture data via events of different points in the program, and allows one to
write specifications in different logics.

MOP [5] is a methodology and framework for building program monitors. In MOP
the craft of a monitoring tool is divided into building a logic engine and a logic plu-
gin. The first is concerned with generating a software artifact that will check the trace.
The later is concerned with the integration of the target program and the logic engine.
Instrumentation and IDE integration are supported by the engine. Several plugins have
been created in this line already including those for ERE and LTL. We believe JEAGLE

can be defined in MOP as well.

3 The Eagle Logic

In this section, the EAGLE finite-trace monitoring logic is introduced. This section as
well as the Appendix A are modifications of part of [3] and serve to give background
on EAGLE.

EAGLE offers a succinct but powerful set of primitives, essentially supporting re-
cursive parameterized equations, with a minimal/maximal fix-point semantics together
with three temporal operators: next-time, previous-time, and concatenation. The next-
time and previous-time operators can be used for defining future and past time logics on
top of EAGLE. The concatenation operator can be used to define interval logics and ex-
tended regular expressions. Rules can be parameterized with formulas and data, which

3

allows the definition of new combinators and contexts to be captured in different points
in time.

Atomic propositions are boolean expressions over a user-defined object denoting
the current state of the program. This design decision allows one to monitor programs
written in different languages with reduced effort. That is, one needs to define such
state object in JAVA, which is the EAGLE implementation language, and send events to
it in order to keep it updated. The logic is first introduced informally by means of two
examples. Syntax and semantics are given in Appendix A.

3.1 EAGLE by example

Assume we want to state a property about a program P, which contains the declaration
of two integer variables x and y. We want to state that whenever x is positive then even-
tually y becomes positive. The property can be written as follows in classical future time
LTL: �(x > 0 → ♦ y > 0). The formulas �F (meaning “always F”) and ♦F (meaning
“eventually F”), for some property F , usually satisfy the following congruences [14],
where the temporal operator ©F stands for next F (meaning “in next state F”):

�F ≡ F ∧©(�F) ♦F ≡ F ∨©(♦F)

One can, for example, show that �F is a solution to the recursive equation X = F∧©X ;
in fact it is the maximal solution3. A fundamental idea in EAGLE is to support this kind
of recursive definition, and to enable users to define their own temporal combinators
using equations similar to those above. In this framework one can write the following
definitions for the combinators Always and Eventually, and the formula to be moni-
tored (M1):

max Always(Form F) = F ∧©Always(F)
min Eventually(Form F) = F ∨©Eventually(F)
mon M1 = Always(x > 0 → Eventually(y > 0))

The Always operator is defined as having a maximal fix-point interpretation. That is,
if by the end of the trace the property was not yet violated it is assumed to be val-
idated. On the other hand, the Eventually operator is defined as having a minimal
interpretation. If by the end of the trace the formula was not yet validated the eventu-
ality is considered violated. Maximal rules define safety properties (nothing bad ever
happens), while minimal rules define liveness properties (something good eventually
happens). In EAGLE, the difference only becomes important when evaluating formulas
at the boundaries of a trace. To understand how this works it suffices to say here that
monitored rules evolve as new states appears in the trace. Assume that the end of the
trace has been reached (we are beyond the last state) and a monitored formula F has
evolved to F ′. Then all rule applications in F ′ of maximal fix-point interpretation will
evaluate to true, since they represent safety properties that apparently have been satis-
fied throughout the trace, while applications of minimal fix-point rules will evaluate to
false, indicating that some event did not happen. Assume for example that we evaluate
the formula M1 in a state where x > 0 and y ≤ 0, then as a liveness obligation for the

3 Similarly, ♦F is a minimal solution to the recursive equation X = F ∨©X

4

future we will have the expression:

Eventually(y > 0)∧Always(x > 0 → Eventually(y > 0))

Assume that, at this point, we detect the end of the trace. That is, we are beyond the last
state. The outstanding liveness obligation Eventually(y > 0) has not yet been fulfilled,
which is an error. This is captured by the evaluation of the minimal fix-point combinator
Eventually being false at this point. The obligation corresponding to the right-hand
side of the ∧, namely, Always(x>0 → Eventually(y>0)), is a safety property and
evaluates to true.

For completeness we provide remaining definitions of the future time LTL operators
U (until) and W (unless) below, and also the past-time operator S (since) used in an
example later on. Note how Unless is defined in terms of other operators. However, it
could have been defined recursively.

min Until(Form F1,Form F2) = F2 ∨ (F1 ∧©Until(F1,F2))
max Unless(Form F1,Form F2) = Until(F1,F2)∨Always(F1)
min Since(Form F1,Form F2) = F2 ∨ (F1 ∧

⊙

Since(F1,F2))

Data Parameters

We have seen how rules can be parameterized with formulas. Let us modify the above
example to include data parameters. Suppose we want to state the property: “whenever
at some point (x = k) > 0 for some k, then eventually y = k”. This can be expressed as
follows in quantified LTL: �(x > 0 → ∃k.(x = k∧♦y = k)). We use a parameterized
rule to state this property, capturing the value of x when x > 0 as a rule parameter.

min R(int k) = Eventually(y = k) mon M2 = Always(x > 0 → R(x))

Rule R is parameterized with an integer k, and is instantiated in M2 when x > 0, hence
capturing the value of x at that moment. Rule R replaces the existential quantifier. The
logic also provides a previous-time operator, which allows us to define past time opera-
tors. Data parameterization is also used to elegantly model real-time logics. The syntax
and semantics of EAGLE is defined in Appendix A. See [3] for more details on EAGLE

and how to encode LTL, MTL in the language. The textual notations for © and
⊙

in
EAGLE are respectively @ and #.

3.2 The EAGLE tool

EAGLE monitors and rules are specified in a text file. In order to verify the program
against the stated properties, the programmer must instrument the application in points
affecting any formula in the specification. In the example above, at any place where x
and y are updated. In these points, the EAGLE state must be updated and then the for-
mula verified as figure 1 shows. Straight lines denote events sent from the instrumented
program.
When an instrumentation point is hit, the EAGLE state is updated (1). Then, the observer
corresponding to the specified properties (spec) is notified (2). In response, the observer
evaluates the formulae in the current state (3) and derive new obligations for the future
which are stored in its internal state.

5

Auxiliary State
written in Java,
user−defined

Instrumented program
Java, C, C++, ...

Eagle Observer
written in Java

1) update

2) notify

3) evaluate formulae in the
current projected state

Spec

<=>

Fig. 1. Eagle architecture

4 JEAGLE

JEAGLE is a logic and tool for runtime verification of JAVA programs. It is built on top
of EAGLE. That is, monitors defined in this language are translated to EAGLE moni-
tors. Because of this, we claim that JEAGLE is not more expressive than EAGLE. On
the one hand, the logic JEAGLE aims at providing a more concise syntax for writing
object-oriented temporal specifications. On the other hand, the tool automates program
instrumentation and the generation of EAGLE monitors therefore reducing errors and
programming effort.

In the previous examples x and y are fields declared in the EAGLE state. In EAGLE,
this state is all the observer class can access (see figure 1). In EAGLE it is not possible
to write, directly in the specification file, properties about program objects and how
they interact. In order to achieve this, one needs to insert (or update) such objects in the
EAGLE state whenever an event of interest takes place; and create rules denoting the
scope of these objects, as R in M2. These tasks are time-consuming and error-prone.

The JEAGLE language allows the user to reason about program objects rather than
this artificial state. That is, the user is able to refer to the program state directly not
through a possibly inaccurate projection of it. This is realized through events. In prac-
tice, the user is able to declare interest in program events and these can carry references
to objects that are subject to reasoning.

JEAGLE extends the EAGLE language with JAVA expressions and with a construct
hereafter called event expression. This construct has been mainly inspired by modal
logic and aspect languages.

JEAGLE in runtime

During program execution the state contains information about the most recent event
emitted which is also declared in the specification. We create AspectJ aspects [12] to
track events that occur in the formulae and update the state.

Some methods declared in the state check if an event has occurred. These methods
are called from the observer to decide if the state satisfies the (event) guard of an event
expression. In practice, whenever a program point of interest is hit, the EAGLE state
gets updated and the formulae are checked by the observer.

6

4.1 Syntax and Informal Semantics

The syntax of JEAGLE is defined in figure 2. This is a simplification of a grammar
defined in a JLEX/JAVA CUP [11] specification.

Event expressions take the form: [event]assertion and 〈event〉assertion, and
extend the language of boolean propositions. So far events correspond to a method being
called or returning from and may bind variables in the scope of an JEAGLE assertion.
Question marks are used within the event description for this purpose. In addition, the
construct [...]... has an implicative semantics, and 〈...〉... a conjunctive semantics.
Therefore, [e]false means that e must not occur while 〈e〉true means that e must occur.

A transformation system is formally defined in the next section. The semantics of
JEAGLE can be inferred by interpreting the rules of this system. However, the seman-
tics is very detailed. Therefore, we understand it is still worth showing the informal
semantics of the event expression. We use a functional pseudo-language in this attempt.

Informal semantics of an event expression

In what follows we show the semantics of an event expression whose event is associated
to a method call. Note that other events are possible to be defined:

[[[eaglepp method expression: ev] eaglepp expr: epp]] ≡ [[

if ev then
let {(x,y) | y? ∈ FV(ev) ∧ x 6∈ FV(epp) } in

epp [−→x /−→y]
else true

]]

ev is a predicate that is valid when an event associated to the method call eaglepp me
thod expression occurs, and [−→x /−→y] denotes the sequence of substitutions [x1/y1]...
[xn/yn] over the pairs (xi,yi) in the binding set. Note that y is an identifier occurring
free in ev and labeled with a question mark, and x does not occur free in epp. That is,
it is a fresh name.

Expressions defined inside brackets are not evaluated. The program will be instru-
mented to track the events associated to them. When the event triggers, the expression
that follows the bracket (epp) is evaluated in the extended environment. The other forms
of event expression have similar semantics with identifiers labeled with question marks
possibly binding the calling thread or the result of a method.

7

annotation ::= define block monitor seq

monitor seq ::= monitor seq monitor | monitor

monitor ::= mon Id = eaglepp expr .

define block ::= var Id Id ; define block | ε
eaglepp expr ::= [eaglepp event expression] eaglepp expr

| < eaglepp event expression > eaglepp expr

| java boolean expr

| Id (eaglepp expr seq)

| eaglepp expr prop bop eaglepp expr

| (eaglepp expr)

| ˜ eaglepp expr | # eaglepp expr | @ eaglepp expr

eaglepp expr seq ::= eaglepp expr , eaglepp expr seq | ε
eaglepp event expression ::= eaglepp event expression thread

| eaglepp event expression nothread

eaglepp event expression thread ::= Id?! : eaglepp event expression nothread

eaglepp event expression nothread ::= eaglepp method expression returns

| eaglepp method expression returns Id?!

| eaglepp method expression

eaglepp method expression ::= Id?! . Id (param list)

param list ::= Id?! , param list | ε
java boolean expr ::= java boolean expr rop java boolean expr

| java boolean expr && java boolean expr

| java boolean expr || java boolean expr

| a Java method expression

| ! java boolean expr | (java boolean expr) | Id

prop bop ::= ∨ | ∧ | →

rop ::= <= | < | > | >= | ==

Id?! ::= Id? | Id

Id ::= a Java identi f ier

Id? ::= Id ?

Fig. 2. Subset of the JEAGLE grammar

8

4.2 JEAGLE by Example

Temporal Buffer Requirements

observer BufferMonitor {
...
var Buffer b ;
var Object o ;

mon M0 =
Always ([b?.put(o?)] Eventually(<b.get() returns k?> k == o)) .

mon M1 =
Always ([b?.put(o?)] @ (Always ([b.put(o)]false))) .

}

Monitor M0 states a property that all buffers must be empty by the end of the trace,
while monitor M1 states that an object can not be added to any buffer more than once.
The eventuality of M0 can also be expressed as: <b.get() returns o>true.
Note that we assume events to be disjoint. That is, two events do not occur simulta-
neously. In other words, events have an interleaving semantics. In addition, recall that
formulae are interpreted as data unless they have to be evaluated in the current state.

Strict Alternation in acquire and release of Locks

The monitors M2 and M3 below state that there should not be an acquire of a lock without
a future release, and there should not be a release without a past acquire. The term “t?
:” qualifies the event description with the thread from which the event was sent.

observer FileSystemMonitor {
...
var Thread t ;
var FileSystem fs ;
var int l ;

mon M2 =
Always ([t? : fs?.acquireLock(l?)] @ (
Until([t: fs.acquireLock(l)]false, <t: fs.releaseLock(l)>true))) .

mon M3 =
Always ([t? : fs?.releaseLock(l?)] # (
Since([t: fs.releaseLock(l)]false , <t: fs.acquireLock(l)>true))) .

}

The first requirement detects a missing release that could lead to starvation and deadlock
since other threads could depend on this lock. The second detects the release of a lock
whose current thread does not own.

9

4.3 Transformation Rules

JEAGLE specifications are translated into EAGLE monitors and instrumentation arti-
facts. Three components need to be produced out of an JEAGLE specification: (1) An
aspect in the ASPECTJ [12] language that will instrument the program to emit events
associated to event expressions, (2) the EAGLE state (as described in section 3.2), and
(3) standard EAGLE monitors and rules corresponding to the JEAGLE requirements.

We now describe a subset of the transformation semantics for JEAGLE as a set of
axioms and rules over the relation B ⊆ Con f ig × Con f ig, where Con f ig = Γ × N ×
B × R × A × S × Term, defined as follows:

– Γ is the type environment that is carried over in order to type methods that will be
generated.

– N is the set of natural numbers. This item is used to generate fresh identifiers.
– B denotes an environment qualifying names that occur in event expressions with

attributes that we associate with some runtime abstraction, e.g. “the first argument
of method m”. B denotes a function Id → (keywords ∪ Id). Keywords represent
data values captured in the last event notified by the program run. For example, the
event b?.put(o?) adds the pairs [b 7→ caller] and [o 7→ arg1] to the map. Note that
the mappings above are only valid until the next event arrives. The mappings of b
and o are replaced by the identity when a rule binding these names is created.

– R denotes the set of rules to be added to the resulting EAGLE specification. Each
rule has the form: Rn 7→ (−→p , t), where Rn is a name identifying the rule, −→p is a list
of (name × type) denoting the formals, and t is the rule body.

– A is the set of aspect pointcuts and advices [12] for program instrumentation.
– S is the set of methods that need to be defined in the EAGLE State class. This is

the only way standard EAGLE can access data values from the formula.
– Term =

⋃

L(k), where k is a syntactic category in the grammar defined. Term
corresponds to the union of the languages defined by each JEAGLE connected com-
ponent.

Assume the following variables: ev denotes an eaglepp event expression, epp an eaglepp
expression, eppseq an eaglepp expr seq. t denotes a Term, tseq a Term Sequence, γ a
type environment, n a natural number, b a name environment, r a set of rules, a a set
of aspects. s denotes a set of method declarations, and id an Id. These names denote
different variables when appearing primed or with a number suffix.

[Event expression]:

(γ,n,b, r,a,s,ev) B (γ,n,b′, r,a′,s′,t)
(γ,n,b′′, r,a′,s′,epp) B (γ,n′,b, r′,a′′,s′′,t′)

(γ,n,b, r,a,s, [ev]epp) B (γ,n′,b, r′[Rn 7→ (−→p ,t′)],a′′,s′′,t → Rn(−→x))

The following applies to the variables in the rule: n’ = n + 1, −→x is a sequence of the form
<..., getValue(b’(k)),...>, and −→p is a sequence of the form <...,(k,γ(k)),...> where k
∈ FV (ev) ∩ Id?. In other words, k is a free identifier labeled with a question mark,
declared in ev, and possibly used in epp. The rule call Rn(−→x) defines a new scope in

10

which these identifiers are bound. The binding map b’ gives the keywords to each k,
and γ their types. getValue is the name of a method in the JEAGLE state that will be
used to access the objects denoting these keywords. Note that a different map (b”) is
carried over to transform epp. This happens because the identifiers are already bound
in the rule Rn. So b” equals to b with [k 7→ k] for all k ∈ FV (ev) ∩ Id?. b’ and b” are
discarded after the transformation.

The event expression 〈...〉... has similar semantics. They differ in the final term
produced. Instead of t → Rn(−→x) this construct produces the term t ∧ Rn(−→x).

[Rule Application]:

(γ,n,b, r,a,s,eppseq) B (γ,n,b, r′,a′,s′,tseq)

(γ,n,b, r,a,s, id0(eppseq)) B (γ,n,b, r′,a′,s′, id0(tseq))

meaning that the transformation of a rule application depends only on its actual param-
eters. The rule for JEAGLE expression sequence follows:

(γ,n0,b, r,a,s,epp) B (γ,n1,b, r′,a′,s′,t)
(γ,n1,b, r′,a′,s′,epp seq) B (γ,n2,b, r′′,a′′,s′′,t′)

(γ,n0,b, r,a,s, epp “,” epp seq) B (γ,n2,b, r ′∪ r′′,a′ ∪a′′,s′ ∪ s′′, t “,” ts)

[Event binding all variables (example)]:

One can define events of many forms and each may bind variables differently. We de-
cided to fix the format of an event in order to make clear the use and definition of
bindings. The next two transformations are instantiations of the “Event” transformation
axiom (not showed).

We here define the translation of events denoting “method returns” in which the
issuing thread, arguments, result, and target object are all passed as parameters to the
rule that defines the continuing obligation. That is, all identifiers in the event are binding
(appear labeled by a question mark).

(γ,n,b, r,a,s, id0? : id1?.id2.(plist) returns id3?) B (γ,n′,b′, r,a′,s′, idn())

In this transformation n’ = n + 1, id0 denotes the thread name, id1 the calling object,
id2 the method name, and id3 the name of the returned value. This event is translated to
a boolean expression (idn()) retuning true when the declared event is the current event
notified in the EAGLE state. In addition to this, the name environment must be updated
as well as the aspect and set of state methods:

b’ = b \ {[pi 7→ argi] | pi = head(taili(plist)) and pi ∈ Id? and 0 ≤ i < |plist|} \

{ [id1 7→ caller], [id3 7→ return], [id0 7→ issuingThread] }. The symbol \ denotes right over-
riding of bindings as usual.

a’ = a ∪ “pointcut to track returns of method id2 passing the calling thread, call target,
return value, and parameters as arguments to a corresponding advice”.

s’ = s ∪ { “ public boolean idn (){ ... } ” }, where idn is a fresh identifier. This
method denotes an event that will be used in the EAGLE formula corresponding to

11

the event expression associated to this event. The event denoted by “t: a.m(i?,j)
returns o?” drives the generation of a method that will return true when the caller
is a, the method called is m with parameters as defined by γ(i) and γ(j), the second
argument of the call is j, and the calling thread is t.

[JEAGLE Event using bound variables (example)]:

The previous rule and this differ essentially in how they build the aspect and the method
denoting the event. These constructions are described by a’ and s’, n’ = n + 1:

(γ,n,b, r,a,s, id0 : id1.id2.(plist) returns id3) B (γ,n′,b, r,a′,s′, idn(−→x))

a’ = a ∪ “pointcut and advice to track returns of method id2.

s’ = s ∪ { “ public boolean idn (−→p){ ... } ” }, where idn is a fresh identifier. This
method returns true when the last event tracked with an aspect advice has id0 as the is-
suing thread, id1 as the calling object, and so forth. These identified variables are passed
as parameters (−→p) to idn() while the last event is part of the EAGLE global state.

−→x is a sequence of the form4: <. . . , k,. . .>, where k ∈ FV (“id0 : id1 . id2 . (plist)
returns id3”) ∩ (b / Id). Since all names appear without question marks there must
be an enclosing rule in which these names bind formal parameters. This is checked by
intersecting the set of names with (b / Id).

[JAVA Boolean Expression]:

(γ,n,b, r,a,s,bexp) B (γ,n′,b, r,a,s′, idn(−→x))

s’ = s ∪ { “ public boolean idn (−→p){ bexp } ” }. JAVA boolean expressions are
translated into boolean methods that can be used as predicates in the generated EAGLE

formula. Note that no transformation is applied within the JAVA boolean expression
since the syntax of these are closed in the JAVA language (see section 4.1).

The method call construction is as defined in the previous rule and thus omitted. In
addition, n’ = n + 1.

[Monitor]:

(γ,0,b, r,a,s,epp) B (γ,n,b, r′,a′,s′,t)

(γ,0, /0, /0, /0, /0,mon id0 = epp) B (γ,n, /0, r′,a′,s′,t)

We omitt the rules for the define block since it is only associating names to type. Note
that no new term is generated particularly in this rule. The EAGLE expression can be
output as the concatenation of all rules collected (r’) and a monitor of the form:

mon idn = t .

Similarly, the aspects can be generated from a’ and the state from s’.
4 In the general “Event” transformation −→x = −→x 1 · −→x 2 where the first sequence is in charge of

passing the values bound by names with question marks, and second sequence takes the form
defined here.

12

4.4 Buffer Example revisited

Figure 3 depicts the format of a logic observer specification in JEAGLE for a Buffer
monitor defined in the beginning of this section. The transformation of this specifica-
tion produces the following EAGLE monitor and rules: max R2(Object o, Object k) =

compare references(o,k) .
max R1(Object b, Object o)=Eventually(get (b)∧R2(o,getValue(ht,‘‘return’’)) .
mon M1 = Always(put ()→ R1(getValue(ht,‘‘caller’’),getValue(ht,‘‘arg1’’)) .

We changed the name of the methods (to get (), put (), compare references())
to improve understanding. These are declared in the EAGLE state.

...Eagle specification file with additional rules and monitors

observer BufferObserver {

classPath = C:/downloads/src
targetPath = C:/downloads/src
terminationMethod = bufferexample.Barrier.end()

var Buffer b ;
var Object o ;
var Object k ;

mon M1 = Always([b?.put(o?)]
Eventually (<b.get() returns k?> (o == k))) .

}

Fig. 3. JEAGLE observer

ht is a hash table stored in the state and carried over to access the parameters of the
last event. This is necessary because methods declared in the EAGLE state and called
from the observer (corresponding to the specification above) can only access actual
parameters. So we have to pass a table that maps keywords to their associated objects
in the latest event.

Note that rules have Object as formals. This is not relevant because an EAGLE

observer makes reflective calls to a state method assuming it has the formal types equal
to the actual types of the arguments. We regard these as EAGLE implementation issues
so they have been omitted thus far.

4.5 Implementation

A parser for JEAGLE was built using JLEX and JAVA CUP. Each transformation rule
or axiom in the previous section corresponds to a visit method in a Visitor class [9]
in charge of transforming the expression. The tool has 6500 lines of Java source code.
The compiler works by transforming JEAGLE phrases written in a specification file into
equivalent EAGLE phrases. A new file is produced as the result.

13

The state and aspect class associated to this specification are generated under the
directory targetPath in a package named monitors. The user must inform where the
classes mentioned in the specification are located. The classPath will be appended to
the ajc (AspectJ compiler) classpath directive which will be called from inside the
compiler. In addition, the user must inform the name of a method - terminationMethod
- he will call when the program terminates. We track this call and inform EAGLE to fin-
ish observation. This is necessary to check eventualities.

5 Conclusion

We have described a tool that generates observers to monitor temporal properties of
JAVA program. The tool and language is named JEAGLE and uses EAGLE as its base
logic. The contribution of this work is twofold. First, instrumentation is automated.
Recall that EAGLE does not support instrumentation since it is language-independent.
Second, one can reason about program objects directly in the formula. This makes easier
to writte object-oriented specifications and also guides program instrumentation.

Further work includes: (1) enhancing the tool to support additional events and wild-
cards, (2) developing a visualization tool for the remaining obligation of the formulae,
and (3) pass vector-clocks as parameters of events in order to tame true concurrency.
The first allows one collecting data-values from other events in the program and also
declaring wildcards as actual parameters for the kinds of events described here. This
should make the definition more concise and clear since only the essential variables
are declared. The second is a tool to support temporal debugging, which has been re-
ported to be a hard task in temporal specification [18]. Finally, we should consider a
true concurrent model where events might happen simultaneously in different proces-
sors. We believe that by tagging events with vector clocks, as in [17], one can build the
partial-order from the trace an that could be used as the model to observe.

14

References

1. 1st, 2nd, and 3rd CAV Workshops on Runtime Verification (RV’01 - RV’03), volume 55(2),
70(4), 89(2) of ENTCS. Elsevier Science: 2001, 2002, 2003.

2. C. Artho, D. Drusinsky, A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu, G. Roşu, and
W. Visser. Experiments with Test Case Generation and Runtime Analysis. In E. Börger,
A. Gargantini, and E. Riccobene, editors, Abstract State Machines (ASM’03), volume 2589
of LNCS, pages 87–107. Springer, March 2003.

3. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Runtime Verification.
In Proceedings of the 5th International Conference on Verification, Model Chacking, and
Abstract Interpretation (VMCAI’04), volume 55(2), 70(4), 89(2) of LNCS, Venice, Italy, Jan
2004. Springer.

4. D. Bartetzko, C. Fisher, M. Moller, and H. Wehrheim. Jass - Java with Assertions. In
K. Havelund and G. Roşu, editors, Proceedings of the First Workshop on Runtime Verification
(RV’01), volume 55 of ENTCS, Paris, France, 2001. Elsevier Science.

5. F. Chen and G. Roşu. Towards Monitoring-Oriented Programming: A Paradigm Combining
Specification and Implementation. In Proceedings of the 3rd Workshop on Runtime Verifica-
tion (RV’03), volume 89 of ENTCS, pages 106–125. Elsevier Science, 2003.

6. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, Cambridge,
Massachusetts, 1999.

7. D. Drusinsky. The Temporal Rover and the ATG Rover. In K. Havelund, J. Penix, and
W. Visser, editors, SPIN Model Checking and Software Verification, volume 1885 of LNCS,
pages 323–330. Springer, 2000.

8. D. Gabbay. The Declarative Past and Imperative Future: Executable Temporal Logic for In-
teractive Systems. In Proceedings of the 1st Conference on Temporal Logic in Specification,
Altrincham, April 1987, volume 398 of LNCS, pages 409–448, 1989.

9. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley, 1995.
10. K. Havelund and G. Roşu. Monitoring Java Programs with Java PathExplorer. In Proceed-

ings of the 1st International Workshop on Runtime Verification (RV’01) [1], pages 97–114.
Extended version to appear in the journal: Formal Methods in System Design, Kluwer, 2004.

11. S. E. Hudson, F. Flannery, C. S. Ananian, D. Wang, and A. W. Appel. CUP Parser Generator
for Java. http://www.cs.princeton.edu/ appel/modern/java/CUP/.

12. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An Overview
of AspectJ. In Proceedings of the 15th ECOOP, Lecture Notes in Computer Science, pages
327–353. Springer-Verlag, 2001.

13. M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a Run-time Assurance Tool for Java.
In Proceedings of Runtime Verification (RV’01), volume 55 of ENTCS. Elsevier Science,
2001.

14. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer, New
York, 1995.

15. R. Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge University
Press, New York, 1992.

16. F. Nielson, H. Riis Nielson, and C. Hankin. Principles of Program Analysis. Springer-Verlag,
1999.

17. K. Sen, G. Roşu, and G. Agha. Runtime Safety Analysis of Multithreaded Programs. In
ESEC/FSE’03. ACM, 2003. 1 - 5 September 2003, Helsinki, Finland.

18. M. H. Smith, G. J. Holzmann, and K. Etessami. Events and Constraints: A Graphical Editor
for Capturing L ogic Requirements of Programs. In Proceedings of the 5th IEEE Intl. Sym-
posium on Requirements Engineering, pages 14–22. IEEE Computer Society, Washington
DC USA, 2001.

19. Eiffel Software. Eiffel language. http://www.eiffel.com/.

15

Appendix A: EAGLE Syntax and Formal Semantics

This appendix is a fragment of [3].

Syntax

A specification S consists of a declaration part D and an observer part O. D consists of
zero or more rule definitions R, and O consists of zero or more monitor definitions M,
which specify what to be monitored. Rules and monitors are named (N).

S ::= D O
D ::= R∗

O ::= M∗

R ::= {max | min} N(T1 x1, . . . ,Tn xn) = F
M ::= mon N = F
T ::= Form | primitive type
F ::= expression | true | false | ¬F | F1 ∧F2 | F1 ∨F2 | F1 → F2 |

©F |
⊙

F | F1 ·F2 | N(F1, . . . ,Fn) | xi

A rule definition R is preceded by a keyword indicating whether the interpretation is
maximal or minimal (which determines the value of a rule application at the boundaries
of the trace). Parameters are typed, and can either be a formula of type Form, or of a
primitive type, such as int, long, float, etc.. The body of a rule/monitor is a boolean
valued formula of the syntactic category Form (with meta-variables F , etc.). Any re-
cursive call on a rule must be strictly guarded by a temporal operator. The propositions
of this logic are boolean expressions over an observer state. Formulas are composed
using standard propositional logic operators together with a next-state operator (©F),
a previous-state operator (

⊙

F), and a concatenation-operator (F1 ·F2). Finally, rules
can be applied and their arguments must be type correct. That is, an argument of type
Form can be any formula, with the restriction that if the argument is an expression, it
must be of boolean type. An argument of a primitive type must be an expression of that
type. Arguments can be referred to within the rule body (xi).

In what follows, a rule N of the form

{max|min} N(Form f1, . . . ,Form fm,T1 p1, . . . ,Tn pn) = F,

where f1, . . . fm are arguments of type Form and p1, . . . pn are arguments of primitive
type, is written in short as

{max|min} N(Form f ,T p) = F

where f and p represent tuples of type Form and T respectively. Without loss of gener-
ality, in the above rule we assume that all the arguments of type Form appear first.

Semantics

The semantics of the logic is defined in terms of a satisfaction relation |= between
execution traces and specifications. An execution trace σ is a finite sequence of program

16

states σ = s1s2 . . . sn, where |σ| = n is the length of the trace. The i’th state si of a
trace σ is denoted by σ(i). The term σ[i, j] denotes the sub-trace of σ from position i
to position j, both positions included; if i ≥ j then σ[i, j] denotes the empty trace. In
the implementation a state is a user defined java object that is updated through a user
provided updateOnEvent method for each new event generated by the program. Given
a trace σ and a specification D O, satisfaction is defined as follows:

σ |= D O iff ∀ (mon N = F) ∈ O . σ,1 |=D F

That is, a trace satisfies a specification if the trace, observed from position 1 (the first
state), satisfies each monitored formula. The definition of the satisfaction relation |=D

⊆ (Trace × nat)× Form, for a set of rule definitions D, is presented below, where
0 ≤ i ≤ n+1 for some trace σ = s1s2 . . . sn. Note that the position of a trace can become
0 (before the first state) when going backwards, and can become n + 1 (after the last
state) when going forwards, both cases causing rule applications to evaluate to either
true if maximal or false if minimal, without considering the body of the rules at that
point.

σ, i |=D expression iff 1 ≤ i ≤ |σ| and evaluate(expression)(σ(i)) == true
σ, i |=D true
σ, i 6|=D false
σ, i |=D ¬F iff σ, i 6|=D F
σ, i |=D F1 ∧F2 iff σ, i |=D F1 and σ, i |=D F2

σ, i |=D F1 ∨F2 iff σ, i |=D F1 or σ, i |=D F2

σ, i |=D F1 → F2 iff σ, i |=D F1 implies σ, i |=D F2

σ, i |=D ©F iff i ≤ |σ| and σ, i+1 |=D F
σ, i |=D

⊙

F iff 1 ≤ i and σ, i−1 |=D F
σ, i |=D F1 ·F2 iff ∃ j s.t. i ≤ j ≤ |σ|+1 and σ[1, j−1]

, i |=D F1 and σ[j,|σ|]
,1 |=D F2

σ, i |=D N(F ,P) iff























if 1 ≤ i ≤ |σ| then:
σ, i |=D F [f 7→ F , p 7→ evaluate(P)(σ(i))]
where (N(Form f ,T p) = F) ∈ D

otherwise, if i = 0 or i = |σ|+1 then:
rule N is defined as max in D

An expression (a proposition) is evaluated in the current state in case the position i is
within the trace (1 ≤ i ≤ n). In the boundary cases (i = 0 and i = n + 1) a proposition
evaluates to false. Propositional operators have their standard semantics in all positions.
A next-time formula ©F evaluates to true if the current position is not beyond the
last state and F holds in the next position. Dually for the previous-time formula. The
concatenation formula F1 ·F2 is true if the trace σ can be split into two sub-traces σ =
σ1σ2, such that F1 is true on σ1, observed from the current position i, and F2 is true
on σ2 (ignoring σ1, and thereby limiting the scope of past time operators). Applying a
rule within the trace (positions 1 . . .n) consists of replacing the call with the right-hand
side of the definition, substituting arguments for formal parameters; if an argument is of
primitive type its evaluation in the current state is substituted for the associated formal
parameter of the rule, thereby capturing a desired freeze variable semantics. At the
boundaries (0 and n+1) a rule application evaluates to true if and only if it is maximal.

17

Appendix B: Buffer Example

Source specification

/* LTL with past and future: */
// Future:
max Always(Term t) = t /\ @ Always(t) .
min Eventually(Term t) = t \/ @ Eventually(t) .
min Until(Term t1,Term t2) = t2 \/ (t1 /\ @ Until(t1,t2)) .
// Past:
max Sofar(Term t) = t /\ # Sofar(t) .
min Previously(Term t) = t \/ # Previously(t) .
min Since(Term t1,Term t2) = t2 \/ (t1 /\ # Since(t1,t2)) .

observer BufferObserver {

classPath = C:/tests/eaglepp
targetPath = C:/tests/eaglepp
terminationMethod = bufferexample.Barrier.end()

var bufferexample.Buffer b ;
var Object o ;
var Object k ;

mon M1 = Always([b?.put(o?)]
Eventually (<b.get() returns k?> (o == k))) .

}

Generated Specification

/* LTL with past and future: */
// Future:
max Always(Term t) = t /\ @ Always(t) .
min Eventually(Term t) = t \/ @ Eventually(t) .
min Until(Term t1,Term t2) = t2 \/ (t1 /\ @ Until(t1,t2)) .
// Past:
max Sofar(Term t) = t /\ # Sofar(t) .
min Previously(Term t) = t \/ # Previously(t) .
min Since(Term t1,Term t2) = t2 \/ (t1 /\ # Since(t1,t2)) .

max r 5(Object o, Object k) = m 7(htable, o, k) .
max r 1(Object o, Object b) = Eventually(m 4(htable, b) /\ r 5(o, getValue(htable,c6))) .
mon M1 = Always(m 0(htable) -> r 1(getValue(htable,c2) , getValue(htable,c3))) .

18

Generated Instrumentation Aspects
package monitors;

import eagle.parser.RuleBase;
import eagle.rbmf.Observer;
import eagle.rbmf.EagleState;
import eaglepp.*;

public aspect BufferObserverAspect {

BufferObserverState state = new BufferObserverState();
Observer observer =

new Observer(RuleBase.parse("C:/tests/eaglepp/bufferexample/buffer compiled.spec"));
Object lock = new Object();

pointcut put (bufferexample.Buffer caller , Object arg0) :
target(caller) && args(arg0) &&
execution(* bufferexample.Buffer.put(Object));

before (bufferexample.Buffer caller , Object arg0) returning :
put (caller , arg0){
synchronized (lock) {

MethodCall mcall = new MethodCall("caller", caller,
new EagleMethod("bufferexample.Buffer","put", new String[]{"Object"}));

mcall.addActualParameter("arg0",arg0);
state.setCurrentEvent(mcall);
state.eventMessage();
observer.handle(state);

}
}

pointcut get (bufferexample.Buffer caller) :
target(caller) && execution(* bufferexample.Buffer.get());

before (bufferexample.Buffer caller) returning (Object result) :
get (caller){
synchronized(lock) {
MethodReturn mret = new MethodReturn(caller, new
EagleMethod("bufferexample.Buffer","get", new String[]{}) , result);

state.setCurrentEvent(mret);
state.eventMessage();
observer.handle(state);

}
}

pointcut end () : call(* bufferexample.Barrier.end(..));

before() : end (){
state.terminate();
observer.end();

}

}

19

Generated EAGLE State

package monitors;

import eaglepp.*; import java.util.*; import java.io.*;

public class BufferObserverState extends EaglePPState {

public static boolean m 0(Hashtable htable) {
return (((String)getValue(htable,"methodName"))!=null &&
((String)getValue(htable,"methodName")).equals("put")) &&
(((String)getValue(htable,"targetType"))!=null &&
((String)getValue(htable,"targetType")).equals("bufferexample.Buffer"));}

public static boolean m 4(Hashtable htable, bufferexample.Buffer b) {
return (((String)getValue(htable,"methodName"))!=null &&
((String)getValue(htable,"methodName")).equals("get")) &&
(((String)getValue(htable,"targetType"))!=null &&
((String)getValue(htable,"targetType")).equals("bufferexample.Buffer")) &&
(getValue(htable,"caller") == b);}

public static boolean m 7(Hashtable htable, Object o, Object k) {
return (o == k) ; }

public static final String c2 = "arg0";
public static final String c3 = "caller";
public static final String c6 = "retObject";
private static File logFile =

new File("bufferexample/errors.BufferObserverState");
private static StringBuffer errorMessages = new StringBuffer();
private static StringBuffer errorWarningMonitors = new StringBuffer();
private static StringBuffer warningMessages = new StringBuffer();

public void eventMessage() {
errorWarningMonitors.append(printEventAsString()+"\n");

}

public void error(String args) {
errorWarningMonitors.append("error: " + args + " was violated\n");
errorMessages.append("error: " + args + " was violated\n");

}

public void warning(String args) {
errorWarningMonitors.append("warning : monitor " + args + " was not validated.\n");
warningMessages.append("warning : monitor " + args + " was not validated.\n");

}

public static void terminate() {
System.out.println("--");
System.out.println("SUMMARY FOR MONITORS");
if (errorMessages.length()>0) {
System.out.println(errorMessages.toString());

} else {
System.out.println(" no violation");

}
if (warningMessages.length()>0) {
System.out.println(warningMessages.toString());

} else {
System.out.println(" eventualities validated");

}
System.out.println("--");
try {
PrintWriter pwriter = new PrintWriter(new FileWriter(logFile));
pwriter.print(errorWarningMonitors.toString());
pwriter.flush();
pwriter.close();
} catch (IOException ioException) {
System.err.println("Could not write to the file."); } } }

20

